3.15.8 \(\int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx\) [1408]

3.15.8.1 Optimal result
3.15.8.2 Mathematica [C] (verified)
3.15.8.3 Rubi [A] (verified)
3.15.8.4 Maple [B] (verified)
3.15.8.5 Fricas [C] (verification not implemented)
3.15.8.6 Sympy [F]
3.15.8.7 Maxima [F]
3.15.8.8 Giac [F]
3.15.8.9 Mupad [F(-1)]

3.15.8.1 Optimal result

Integrand size = 37, antiderivative size = 111 \[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=-\frac {2 e (c e+d e x)^{3/2} \sqrt {1-c^2-2 c d x-d^2 x^2}}{5 d}+\frac {6 e^{5/2} E\left (\left .\arcsin \left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{5 d}-\frac {6 e^{5/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right ),-1\right )}{5 d} \]

output
6/5*e^(5/2)*EllipticE((d*e*x+c*e)^(1/2)/e^(1/2),I)/d-6/5*e^(5/2)*EllipticF 
((d*e*x+c*e)^(1/2)/e^(1/2),I)/d-2/5*e*(d*e*x+c*e)^(3/2)*(-d^2*x^2-2*c*d*x- 
c^2+1)^(1/2)/d
 
3.15.8.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.49 \[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=-\frac {2 e (e (c+d x))^{3/2} \left (\sqrt {1-(c+d x)^2}-\operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},(c+d x)^2\right )\right )}{5 d} \]

input
Integrate[(c*e + d*e*x)^(5/2)/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]
 
output
(-2*e*(e*(c + d*x))^(3/2)*(Sqrt[1 - (c + d*x)^2] - Hypergeometric2F1[1/2, 
3/4, 7/4, (c + d*x)^2]))/(5*d)
 
3.15.8.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {1116, 1114, 836, 27, 762, 1389, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^{5/2}}{\sqrt {-c^2-2 c d x-d^2 x^2+1}} \, dx\)

\(\Big \downarrow \) 1116

\(\displaystyle \frac {3}{5} e^2 \int \frac {\sqrt {c e+d x e}}{\sqrt {-c^2-2 d x c-d^2 x^2+1}}dx-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

\(\Big \downarrow \) 1114

\(\displaystyle \frac {6 e \int \frac {c e+d x e}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}}{5 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

\(\Big \downarrow \) 836

\(\displaystyle \frac {6 e \left (e \int \frac {c e+d x e+e}{e \sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}-e \int \frac {1}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}\right )}{5 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {6 e \left (\int \frac {c e+d x e+e}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}-e \int \frac {1}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}\right )}{5 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {6 e \left (\int \frac {c e+d x e+e}{\sqrt {1-\frac {(c e+d x e)^2}{e^2}}}d\sqrt {c e+d x e}-e^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right ),-1\right )\right )}{5 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

\(\Big \downarrow \) 1389

\(\displaystyle \frac {6 e \left (e \int \frac {\sqrt {\frac {c e+d x e}{e}+1}}{\sqrt {1-\frac {c e+d x e}{e}}}d\sqrt {c e+d x e}-e^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right ),-1\right )\right )}{5 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {6 e \left (e^{3/2} E\left (\left .\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right )\right |-1\right )-e^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right ),-1\right )\right )}{5 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{3/2}}{5 d}\)

input
Int[(c*e + d*e*x)^(5/2)/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]
 
output
(-2*e*(c*e + d*e*x)^(3/2)*Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2])/(5*d) + (6*e* 
(e^(3/2)*EllipticE[ArcSin[Sqrt[c*e + d*e*x]/Sqrt[e]], -1] - e^(3/2)*Ellipt 
icF[ArcSin[Sqrt[c*e + d*e*x]/Sqrt[e]], -1]))/(5*d)
 

3.15.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 836
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, 
Simp[-q^(-1)   Int[1/Sqrt[a + b*x^4], x], x] + Simp[1/q   Int[(1 + q*x^2)/S 
qrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]
 

rule 1114
Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symb 
ol] :> Simp[(4/e)*Sqrt[-c/(b^2 - 4*a*c)]   Subst[Int[x^2/Sqrt[Simp[1 - b^2* 
(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c 
, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
 

rule 1116
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[2*d*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p 
 + 1))), x] + Simp[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1)))   Int[(d 
 + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p 
+ 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] && RationalQ[p]) || OddQ[m])
 

rule 1389
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d/Sq 
rt[a]   Int[Sqrt[1 + e*(x^2/d)]/Sqrt[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, 
 d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] && GtQ[a, 0]
 
3.15.8.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(182\) vs. \(2(89)=178\).

Time = 2.62 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.65

method result size
default \(\frac {\sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, e^{2} \left (-2 d^{4} x^{4}-8 c \,d^{3} x^{3}-12 c^{2} d^{2} x^{2}-8 c^{3} d x +3 \sqrt {-2 d x -2 c +2}\, \sqrt {d x +c}\, \sqrt {2 d x +2 c +2}\, E\left (\frac {\sqrt {-2 d x -2 c +2}}{2}, \sqrt {2}\right )-2 c^{4}+2 d^{2} x^{2}+4 c d x +2 c^{2}\right )}{5 d \left (d^{3} x^{3}+3 c \,d^{2} x^{2}+3 c^{2} d x +c^{3}-d x -c \right )}\) \(183\)
risch \(\frac {2 \left (d x +c \right )^{2} \left (d^{2} x^{2}+2 c d x +c^{2}-1\right ) \sqrt {e \left (d x +c \right ) \left (-d^{2} x^{2}-2 c d x -c^{2}+1\right )}\, e^{3}}{5 d \sqrt {-e \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right )}\, \sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}+\frac {\left (\frac {6 c \left (-\frac {c -1}{d}+\frac {c +1}{d}\right ) \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c +1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, F\left (\sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}, \sqrt {\frac {-\frac {c +1}{d}+\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c}{d}}}\right )}{5 \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -e \,c^{3}+d e x +c e}}+\frac {6 d \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \left (\left (-\frac {c -1}{d}+\frac {c}{d}\right ) E\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )-\frac {c F\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{d}\right )}{5 \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -e \,c^{3}+d e x +c e}}\right ) \sqrt {e \left (d x +c \right ) \left (-d^{2} x^{2}-2 c d x -c^{2}+1\right )}\, e^{3}}{\sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}\) \(702\)
elliptic \(\frac {\sqrt {-e \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right )}\, \sqrt {e \left (d x +c \right )}\, \left (-\frac {2 e^{2} x \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -e \,c^{3}+d e x +c e}}{5}-\frac {2 e^{2} c \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -e \,c^{3}+d e x +c e}}{5 d}+\frac {2 \left (c^{3} e^{3}+\frac {2 e^{2} \left (-e \,c^{3}+c e \right )}{5}+\frac {2 e^{2} c \left (-\frac {3}{2} d e \,c^{2}+\frac {1}{2} d e \right )}{5 d}\right ) \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, F\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -e \,c^{3}+d e x +c e}}+\frac {2 \left (\frac {9 c^{2} d \,e^{3}}{5}+\frac {2 e^{2} \left (-\frac {9}{2} d e \,c^{2}+\frac {3}{2} d e \right )}{5}\right ) \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \left (\left (-\frac {c -1}{d}+\frac {c}{d}\right ) E\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )-\frac {c F\left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{d}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -e \,c^{3}+d e x +c e}}\right )}{\left (d x +c \right ) \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, e}\) \(757\)

input
int((d*e*x+c*e)^(5/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x,method=_RETURNVERBO 
SE)
 
output
1/5*(e*(d*x+c))^(1/2)*(-d^2*x^2-2*c*d*x-c^2+1)^(1/2)*e^2*(-2*d^4*x^4-8*c*d 
^3*x^3-12*c^2*d^2*x^2-8*c^3*d*x+3*(-2*d*x-2*c+2)^(1/2)*(d*x+c)^(1/2)*(2*d* 
x+2*c+2)^(1/2)*EllipticE(1/2*(-2*d*x-2*c+2)^(1/2),2^(1/2))-2*c^4+2*d^2*x^2 
+4*c*d*x+2*c^2)/d/(d^3*x^3+3*c*d^2*x^2+3*c^2*d*x+c^3-d*x-c)
 
3.15.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.82 \[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\frac {2 \, {\left (3 \, \sqrt {-d^{3} e} e^{2} {\rm weierstrassZeta}\left (\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right ) - {\left (d^{2} e^{2} x + c d e^{2}\right )} \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} \sqrt {d e x + c e}\right )}}{5 \, d^{2}} \]

input
integrate((d*e*x+c*e)^(5/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="f 
ricas")
 
output
2/5*(3*sqrt(-d^3*e)*e^2*weierstrassZeta(4/d^2, 0, weierstrassPInverse(4/d^ 
2, 0, (d*x + c)/d)) - (d^2*e^2*x + c*d*e^2)*sqrt(-d^2*x^2 - 2*c*d*x - c^2 
+ 1)*sqrt(d*e*x + c*e))/d^2
 
3.15.8.6 Sympy [F]

\[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int \frac {\left (e \left (c + d x\right )\right )^{\frac {5}{2}}}{\sqrt {- \left (c + d x - 1\right ) \left (c + d x + 1\right )}}\, dx \]

input
integrate((d*e*x+c*e)**(5/2)/(-d**2*x**2-2*c*d*x-c**2+1)**(1/2),x)
 
output
Integral((e*(c + d*x))**(5/2)/sqrt(-(c + d*x - 1)*(c + d*x + 1)), x)
 
3.15.8.7 Maxima [F]

\[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{\frac {5}{2}}}{\sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}} \,d x } \]

input
integrate((d*e*x+c*e)^(5/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="m 
axima")
 
output
integrate((d*e*x + c*e)^(5/2)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)
 
3.15.8.8 Giac [F]

\[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{\frac {5}{2}}}{\sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}} \,d x } \]

input
integrate((d*e*x+c*e)^(5/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="g 
iac")
 
output
integrate((d*e*x + c*e)^(5/2)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)
 
3.15.8.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^{5/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^{5/2}}{\sqrt {-c^2-2\,c\,d\,x-d^2\,x^2+1}} \,d x \]

input
int((c*e + d*e*x)^(5/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2),x)
 
output
int((c*e + d*e*x)^(5/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2), x)